516 research outputs found

    An Approximate Kernel for Connected Feedback Vertex Set

    Get PDF
    The Feedback Vertex Set problem is a fundamental computational problem which has been the subject of intensive study in various domains of algorithmics. In this problem, one is given an undirected graph G and an integer k as input. The objective is to determine whether at most k vertices can be deleted from G such that the resulting graph is acyclic. The study of preprocessing algorithms for this problem has a long and rich history, culminating in the quadratic kernelization of Thomasse [SODA 2010]. However, it is known that when the solution is required to induce a connected subgraph (such a set is called a connected feedback vertex set), a polynomial kernelization is unlikely to exist and the problem is NP-hard to approximate below a factor of 2 (assuming the Unique Games Conjecture). In this paper, we show that if one is interested in only preserving approximate solutions (even of quality arbitrarily close to the optimum), then there is a drastic improvement in our ability to preprocess this problem. Specifically, we prove that for every fixed 0<epsilon<1, graph G, and k in N, the following holds: There is a polynomial time computable graph G\u27 of size k^O(1) such that for every c >= 1, any c-approximate connected feedback vertex set of G\u27 of size at most k is a c * (1+epsilon)-approximate connected feedback vertex set of G. Our result adds to the set of approximate kernelization algorithms introduced by Lokshtanov et al. [STOC 2017]. As a consequence of our main result, we show that Connected Feedback Vertex Set can be approximated within a factor min{OPT^O(1),n^(1-delta)} in polynomial time for some delta>0

    Linear Time Parameterized Algorithms via Skew-Symmetric Multicuts

    Full text link
    A skew-symmetric graph (D=(V,A),σ)(D=(V,A),\sigma) is a directed graph DD with an involution σ\sigma on the set of vertices and arcs. In this paper, we introduce a separation problem, dd-Skew-Symmetric Multicut, where we are given a skew-symmetric graph DD, a family of T\cal T of dd-sized subsets of vertices and an integer kk. The objective is to decide if there is a set X⊆AX\subseteq A of kk arcs such that every set JJ in the family has a vertex vv such that vv and σ(v)\sigma(v) are in different connected components of D′=(V,A∖(X∪σ(X))D'=(V,A\setminus (X\cup \sigma(X)). In this paper, we give an algorithm for this problem which runs in time O((4d)k(m+n+ℓ))O((4d)^{k}(m+n+\ell)), where mm is the number of arcs in the graph, nn the number of vertices and ℓ\ell the length of the family given in the input. Using our algorithm, we show that Almost 2-SAT has an algorithm with running time O(4kk4ℓ)O(4^kk^4\ell) and we obtain algorithms for {\sc Odd Cycle Transversal} and {\sc Edge Bipartization} which run in time O(4kk4(m+n))O(4^kk^4(m+n)) and O(4kk5(m+n))O(4^kk^5(m+n)) respectively. This resolves an open problem posed by Reed, Smith and Vetta [Operations Research Letters, 2003] and improves upon the earlier almost linear time algorithm of Kawarabayashi and Reed [SODA, 2010]. We also show that Deletion q-Horn Backdoor Set Detection is a special case of 3-Skew-Symmetric Multicut, giving us an algorithm for Deletion q-Horn Backdoor Set Detection which runs in time O(12kk5ℓ)O(12^kk^5\ell). This gives the first fixed-parameter tractable algorithm for this problem answering a question posed in a paper by a superset of the authors [STACS, 2013]. Using this result, we get an algorithm for Satisfiability which runs in time O(12kk5ℓ)O(12^kk^5\ell) where kk is the size of the smallest q-Horn deletion backdoor set, with ℓ\ell being the length of the input formula

    A Linear Time Parameterized Algorithm for Node Unique Label Cover

    Get PDF
    The optimization version of the Unique Label Cover problem is at the heart of the Unique Games Conjecture which has played an important role in the proof of several tight inapproximability results. In recent years, this problem has been also studied extensively from the point of view of parameterized complexity. Cygan et al. [FOCS 2012] proved that this problem is fixed-parameter tractable (FPT) and Wahlstr\"om [SODA 2014] gave an FPT algorithm with an improved parameter dependence. Subsequently, Iwata, Wahlstr\"om and Yoshida [2014] proved that the edge version of Unique Label Cover can be solved in linear FPT-time. That is, there is an FPT algorithm whose dependence on the input-size is linear. However, such an algorithm for the node version of the problem was left as an open problem. In this paper, we resolve this question by presenting the first linear-time FPT algorithm for Node Unique Label Cover

    On Approximate Compressions for Connected Minor-Hitting Sets

    Get PDF
    In the Connected ?-Deletion problem, ? is a fixed finite family of graphs and the objective is to compute a minimum set of vertices (or a vertex set of size at most k for some given k) such that (a) this set induces a connected subgraph of the given graph and (b) deleting this set results in a graph which excludes every F ? ? as a minor. In the area of kernelization, this problem is well known to exclude a polynomial kernel subject to standard complexity hypotheses even in very special cases such as ? = K?, i.e., Connected Vertex Cover. In this work, we give a (2+?)-approximate polynomial compression for the Connected ?-Deletion problem when ? contains at least one planar graph. This is the first approximate polynomial compression result for this generic problem. As a corollary, we obtain the first approximate polynomial compression result for the special case of Connected ?-Treewidth Deletion

    Lossy Kernelization

    Get PDF
    In this paper we propose a new framework for analyzing the performance of preprocessing algorithms. Our framework builds on the notion of kernelization from parameterized complexity. However, as opposed to the original notion of kernelization, our definitions combine well with approximation algorithms and heuristics. The key new definition is that of a polynomial size α\alpha-approximate kernel. Loosely speaking, a polynomial size α\alpha-approximate kernel is a polynomial time pre-processing algorithm that takes as input an instance (I,k)(I,k) to a parameterized problem, and outputs another instance (I′,k′)(I',k') to the same problem, such that ∣I′∣+k′≤kO(1)|I'|+k' \leq k^{O(1)}. Additionally, for every c≥1c \geq 1, a cc-approximate solution s′s' to the pre-processed instance (I′,k′)(I',k') can be turned in polynomial time into a (c⋅α)(c \cdot \alpha)-approximate solution ss to the original instance (I,k)(I,k). Our main technical contribution are α\alpha-approximate kernels of polynomial size for three problems, namely Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors. These problems are known not to admit any polynomial size kernels unless NP⊆coNP/polyNP \subseteq coNP/poly. Our approximate kernels simultaneously beat both the lower bounds on the (normal) kernel size, and the hardness of approximation lower bounds for all three problems. On the negative side we prove that Longest Path parameterized by the length of the path and Set Cover parameterized by the universe size do not admit even an α\alpha-approximate kernel of polynomial size, for any α≥1\alpha \geq 1, unless NP⊆coNP/polyNP \subseteq coNP/poly. In order to prove this lower bound we need to combine in a non-trivial way the techniques used for showing kernelization lower bounds with the methods for showing hardness of approximationComment: 58 pages. Version 2 contain new results: PSAKS for Cycle Packing and approximate kernel lower bounds for Set Cover and Hitting Set parameterized by universe siz
    • …
    corecore